Kromatografi Dedektörleri (chromatography detectors)

Kromatografi, kompleks karışımlardaki çeşitli maddeleri birbirinden ayırmaya ve tanımlamaya olanak veren ve bilim adamlarının çalışmalarını kolaylaştıran bir seri ayırma yöntemleri tekniğidir. Tüm kromatografik uygulamalarda bir "sabit faz" ve bir "hareketli faz" bulunur. Bir karışımdaki maddeler hareketli faz ile sürüklenerek sabit faz üzerinden taşınır; Örnekteki maddelerin göç etme hızlarının farklı olması, her bir maddenin sabit faz üzerinde gruplaşarak ilerlemesine yol açar, böylece karışım içindeki maddeler birbirinden ayrılırlar


GAZ KROMATOGRAFİSİ (GC) DEDEKTÖRLERİ

Bir gaz kromatografisi dedektörü kromatografik işlem uygulanan bir karışımdaki bileşenleri süratle ve hassasiyetle algılayabilen bir aygıttrır; sisteme uzamsal ve zamansal boyutlada yerleşririlebilir. Herhangi bir anda, taşıyıcı gazdaki madde konsantrasyonu sadece binde birkaç seviyesindedir ve dedektör bunun çok altındaki değerleri algılayabilecek kapasitede olmalıdır. Ayrıca bir pikin dedektörü geçtiği süre 1 sn veya daha kısa bir zaman aralığı olduğundan, dedektör kısa bir periyot içinde tüm algılama gücünü gösterebilmelidir. Dedektörün doğrusal ve muntazam algılamalar yapabilmesi ve uzun süre kararlılığını koruyabilmesi istenir.

İlk kullanılan dedektörler arasında gaz yoğunluğu terazisi, katarometre, alev temokupl dedektörü, b-ışını dedektörü ve emissivite dedektörü sayılabilir. Gaz kromaatografisi tekniklerindeki gelişmeler son on yılda artık kararlı hale gelmiş gibidir; bu durum GC dedektörleri için de söz konusudur. Son yıllarda çok az sayıda yeni ticari gaz dedektörü üretilmiştir. Yirmi yıl öncesinde olduğu gibi hala çok popüler olan ve tüm gaz kromatografik çalışmaların, yaklaşık %95’inde kullanılabil dört dedektör tipi vardır; termal iletkenlik (TCD), alev iyonizasyon (FID), nitrojen fosfor (NPD), ve elektron yakalama (ECD).

Algılanması istenen komponentlere bağlı olarak geliştirilmiş çok çeşitli gaz kromatografisi dedektörü vardır. Kullanım alanı yaygın olan bazı dedektörler, uygulama alanlarıve hassasiyetleri aşağıdaki tabloda verilmiştir.

Tipik Bazı Gaz Kromatografisi Dedektörleri ve
Algılama Limitleri


Gaz kromatografisi dedektörerin çoğu, GC kolonundan gelen akımdaki bileşenlerin iyonlaştırılmasında farklı iyonizasyon metotlarının kullanıldığı iyon dedektörleridir; bir kapasitör veya vakum tüpüne benzerler.

Bir iyonizasyon dedektörü, içinde, önemli derecede iyonizasyon potansiyeli üretebilen bir gaz bulunan sızdırmaz bir ‘iyon odacığı’dır. Bu amaçla argon, kripton, neon, ksenon, helyum gibi gazlar kullanılabilir. Tipik olarak odacık metalden yapılır; negatif potansiyel taşır (katot) ve topraklanmıştır. Anot gergin bir tel, bir çubuk veya bir disk olabilir. Odacığın bir tarafında veya son kısmında bir pencere vardır; pencere ışını (alfa, beta, gama ve X-ışınları) ölçebilecek derecede şeffaf olmalı ve ışının odacığın iç tarafına nüfuz etmesine olanak vermelidir. Elektrotlar bir güç kaynağına bağlandığında ve odacığa ışın verildiğinde, iyonizasyonla oluşan ortalama akım veya puls sayısı ve/veya bunların genliği, ışının miktarını gösterir. İlk üretilen GC iyonizasyon dedektörlerinin (1950 yılları) hassasiyetleri, katharometre veya alev termokupl dedektörler seviyesindeydi (~10-6 g/ml).

Termal İletkenlik Dedektörü, TCD

Kullanım alanı geniş olan bu yöntemde, gaz akımındaki ısısal iletkenliğin değişmesi algılanır; bu amaçla kullanılan cihaza bazan "katharometre" denir. Cihazın hassas elementi elektrikle ısıtılan bir kaynaktır; kaynağın sıcaklığı, sabit elektrik gücünde, etrafındaki gazın ısıl iletkenliği ile değişir. Element ince bir Pt tungsten tel veya yarı iletken bir termistördür. Tel veya termistörün direnci gazın ısıl iletkenliğinin bir ölçüsüdür; telin sıcaklık katsayısı pozitif, termistörünki negatiftir.

TCD’lerde genellikle çift dedektör kullanılır; biri taşıyıcı gazı (referans), diğeri taşıyıcı gaz ve örnek karışımının ısıl iletkenliğini izler. Bunlar örnek injeksiyon odacığının önündeki gaz akımı içine ve kolon çıkışına konarak taşıyıcı gazın ısıl iletkenliği yok edilir; akış hızı, basınç ve elektrik gücündeki değişiklerin etkisi de en aza indirilir. Dedektörlerin dirençleri, bir Wheatstone köprüsünün iki kolu üzerinde birleştirilerek kıyaslanır.

Hidrojen ve helyumun ısıl iletkenlikleri, pek çok organik maddeye göre 6-10 kat daha fazladır. Bu nedenle çok az miktarlardaki organik maddeler bile kolon akışındaki ısıl iletkenliği önemli derecede düşürür. Azot ve karbon dioksitin iletkenlikleri organik maddelerinkine yakındır; bu nedenle taşıyıcı gaz azot veya karbon dioksit ise ısıl iletkenlik yöntemi hassasiyetini kaybeder. Isıl iletkenlik dedektörleri basit, kaba ve ucuzdur. Bunlar diğer bazı dedektörler kadar hassas değildir.

Isıl iletkenlik dedektörü şematik görünümü

Alev İyonizasyon Dedektörü (FID)

Pek çok organik bileşik bir hidrojen/hava alevinde piroliz edildiğinde, bazı ara ürünler verirler; bu reaksiyonlar alevden elektrik taşınmasına yol açarlar. Şekilde  görülen bir sistemle iyonlar toplanarak oluşturuldukları iyon akımı ölçülebilir. Bir alevin elektrik direnci çok yüksektir (1012 ohm gibi) ve meydana gelen akım da önemsizdir; bu akım ancak bir elektrometre ile ölçülebilir.

Karbon bileşiklerinin alevdeki iyon sayısı (kabaca) alevde indirgenen karbon atomlarının sayısı ile orantılıdır; Karbonil, alkol, ve amin gibi fonksiyonel gruplar çok az iyonlaşırlar veya hiç iyon vermezler.

Hidrojen alev dedektörleri çok kullanılan, çok hassas dedektörlerdir. Isıl iletkenlik dedektörlerine kıyasla daha karmaşık ve daha pahalıdır. Bunların doğrusal algılama aralığı daha geniştir.

Alev İyonizasyon dedektörü

Nitrojen-Fosfor Dedektörü (NPD)

Nitrojen-fosfor dedektörü (bazen termiyonik dedektör de denir), alev iyonizasyon dedektörüne benzeyen, fakat tamamen farklı prensiplere göre çalışan çok hassas özel seçici bir dedektördür; 10-12 g/ml fosfor ve 10-11 g/ml nitrojeni ölçebilir. Bir fosfor atomuna karşı, bir azot atomundan 10 kat, bir karbon atomundan da 104 –106 kat daha fazla respons verir. Bu özellikler NPD’yi özellikle fosforlu pestisidlerin tanımlanması ve tayin edilmesinde çok önemli kılar.

Bir NPD yapı olarak alev iyonizasyon dedektörüne benzer; farklılık, hidrojen jetine yakın bir mesafede yerleştirilmiş, içinde ısıtıcı bir sarım olan bir ribüdyum veya sezyum klorür taneciktir; taneciğin bulunduğu yerde, H2 ve taşıyıcı gaz N2 karışır.

Dedektör hem nitrojen ve hem de fosforun algılanması için kullanıldığında hidrojen akımı en düşük düzeyde tutulmalıdır; bu durumda jette gaz yanmaz. Dedektörün sadece fosforu algılanması istendiğinde daha fala hidrojen verilir ve karışım jette yanar. Isıtılan alkali tanecik, termiyonik emisyonla elektronlar emitler (yayar), bunlar anotta toplanır ve elektrot sisteminde arka plan akımını yaratırlar.

Nitrojen veya fosfor içeren bir örnekle çalışıldığında kısmen yanmış nitrojen ve fosforlu maddeler taneciğin yüzeyinde adsorblanır. Adsorblanmış madde yüzeyin iş-fonksiyonu düşürür, bunun sonucu olarak elektron emisyonu artar ve anotta toplanan akım yükselir.

Nitrojen-fosfor dedektörü

Elektron-Yakalama İyonizasyon Dedektörü (ECD)

Elektron-yakalama dedektörleri, X-ışınları ölçümüne benzer şekilde çalışırlar. Dedektörde düşük enerjili b ışını ile elektronlar ve iyonlar üretilir. İlk kullanılan kaynak bir gümüş sarım içinde absorblatılmış trityumdu; ancak bu maddenin yüksek sıcaklıklarda kararsız olması nedeniyle çok daha kararlı olan 63Ni kaynak kullanılmaya başlanmıştır.

Kolondan çıkan akım, bir beta-vericiden geçirilir. Vericiden gelen bir elektron, taşıyıcı gazı (çoğunlukla azot) iyonlaştırır ve bir elektron çıkarır. Ortamda organik madde yoksa bu iyonizasyon sonunda sabit bir akım görülür. Organik madde bulunması durumunda ise elektronlar madde tarafından yakalanacağından akım düşer; Akım kaybı ölçülür ve sinyal meydana gelir.

Elektron-yakalama dedektörü, FID kadar hassas bir dedektördür; fakat dinamik aralığı sınırlıdır. Daha çok halojenli bileiklerin analizlerinde kullanılır. Peroksidler, kinonlar, ve nitro grupları gibi elektronegatif fonksiyonel gruplara karşı çok hassastır. Aminler, alkoller, ve hidrokarbonlara karşı hassasiyetleri düşüktür. Bu dedektörler en çok klorlu tarım ilaçlarının analizlerinde kullanılır.

Elektron yakalama dedektörü

Atomik Emisyon Dedektör (AED)

Atomik emisyon dedektör, alev iyonizasyon dedektöre benzer; farlılık, AED’lerde kısmen iyonlaşmış  plazma kullanılmasıdır.

Atomik emisyon dedektörler element seçici dedektörlerdir. Plazma kaynak, bir örneğin tüm elementlerini atomize eder ve bunların karakteristik atomik emisyon spektrumlarının elde edilmesini sağlar. Atomik emisyon algılaması esasına göre çalıştığından uygulama alanı çık geniştir. Plazmanın yaratılması için üç yöntem uygulanır:

·         Mikrodalga-uyarmalı plazma (MIP)
·         İndüktif bağlantılı plazma (ICP)
·         Doğru akım plazma (DCP)

Bunlar arasında en fazla kullanılanı mikrodalga-uyarılı plazmadır

Atomik emisyon dedektörde kapiler kolondan gelen akımı plazma ölmesine ileten bir arayüz, bir mikrodalga odacığı, soğutma sistemi bulunur. Dedektör çıkışı bir difraksiyon gratingin bulunduğu optik sistemden geçer ve ayarlanabilir bir fotodioda gelir.

Atomik emisyon dedektör (AED)

Fotoiyonizasyon Dedektör (PID)

Bir fotoiyonizasyon dedektörü, yüksek enerjili fotonlarla (tipik olarak UV ışık) molekülleri kırarak pozitif yüklü iyonlar haline dönüştüren bir iyon dedektörüdür. Gaz kromatografisi kolonundan çıkan akım yüksek enerjili fotonlarla bombardıman edilir, moleküller yüksek enerjili UV ışığı absorblar ve iyonizasyon potansiyeli fotonun enerjisinden daha düşük olanlar iyonlaşırlar, pozitif bir iyon meydana gelir.

Meydana gelen iyonlar bir toplayıcı elektrotta toplanır; iyon akımı amplifiye edilir ve okuyucuya gönderilir. Bu amaçla kullanılan UV lamba 10.6eV, 11.7eV, ve 11.8eV olabilir.

Fotoiyonizasyon dedektör (PID)

Kütle Spektrometre (MS) Dedektörler

Kütle spektrometre dedektörler, tüm gaz kromatografisi dedektörleri arasında en güçlü olanlarıdır. Bir GC/MS sisteminde ayırma boyunca, kütle spektrometresi sürekli olarak kütleleri tarar. Örnek kromatografi kolonundan çıktığında bir transfer hattından geçerek kütle spektrometrenin girişine gelir; burada bir elektron-darbe (impact) iyon kaynağı tarafından iyonlaştırılır ve fragmanlara ayrılır. Bu işlem sırasında örnek enerjili elektronlarla bombardıman edilir ve elektrostatik kuvvetler molekülün elektron kaybederek iyonlaşmasını sağlar. Bombardımanın ilerletilmesi iyonların fragmanlara dönüşmesine neden olur. Kütle analizörüne giren iyonlar burada m/z (kütle-yük oranı) değerlerine göre sıralanırlar. İyonların çoğu tek değerlidir.

Sistemde, kromatogram alıkonma zamanlarını belirler, kütle analizörü de piklerden, karışımda ne tür moleküllerin bulunduğunu saptar. Kullanımı en yaygın olan küle analizörü, gaz anyon ve katyonların elektrik ve magnetik alan vasıtasıyla uzun süre tutulmasını sağlayan kuadrupol iyon-kapanı analizördür.

İyon kapanı analizöründe üç elektrot bulunur. Merkez elektrot halka; üst ve taban elektrotlar yarım küre şeklindedir. İyonizasyon ve kütle analizi aynı yerde gerçekleşir. Ayrılan iyonlar bir iyon dedektörüyle ölçülür; kullanımı en yaygın olan dedektör, sürekli dinod tip bir iyon dedektörü olan  elektron multiplierlerdir.

Kuadrupol iyon kapanı için iki şematik diyagram

Alev Temokupl Dedektör (FTD)

Alev termokupl dedektörü ilk üretilen GC dedektörlerindendir ve alev iyonizasyon dedektörlerin ((FID) öncüsü olarak kabul edilebilir. FID’lerin üretimiyle FTD’lerin ticari önemi kalmamıştır.

FTD’de taşıyıc gaz olarak. hidrojen, veya hidrojen+nitrojen karışımı kullanılır; kolondan gelen gaz küçük bir jetin ucunda yakılır; alev, jetin üst kısmına yerleştirilmiş olan termokupl ısıtır. Gaz akımında analiz edilecek madde olması halinde gazın yanma ısısı artacağından alevin sıcaklığı ve termokuplun çıkışı da yükselir. Çıkış, bir potansiyometrik kaydediciye gönderilir.

Dedektörün responsu, maddenin yanma ısısıyla orantılıdır ve konsantrasyonun üçüncü dereceden büyüklüğünün üzerine kadar doğrusaldır; hassasiyeti 10-6 g/ml dir (heptanda).

Alev termokupl dedektör

Emissivite Dedektörü

Emissivite dedektörü, alev termokupl dedektörün enteresan ve yenilikçi bir şekli olarak geliştirilmiş bir dedektördür. Kolon akımı yanabilen bir gazla karıştırılır ve bir jette yakıarak alevin parlaklığının veya renginin artması algılanır.

Alevin ters tarafında, emitlenen ışğa odaklanmış bir mercek (bir fotoselin üzerinde) bulunur. Alev ışığının çıkışı, basit bir potansiyometre ağıyla dengelenmiştir.

Dedektör, aromatik hidrokarbonlara karşı seçicidir; alevin parlaklığı veya rengi değiştiğinde sistemdeki mevcut denge bozulur ve respons potansiyometrik kaydedicide algılanır. Hassasiyet 10-6 g/ml seviyesindedir.

Doygun hidrokarbonlar, aromatik hidrokarbonların tersine, yandıkları zaman alevin parlaklığını yeteri kadar değiştirebilecek özellikte olmadıklarından responsları zayıftır, dolayısıyla bu tür bir dedektörle tayinlerinde hassasiyet düşük olur.

Bir emissivite dedektörü

Alev Fotometrik Dedektör (FPD)

Alev fotometrik dedektörler (FPD) sülfürlü veya fosforlu bileşiklerin tayininde kullanılan dedektörlerdir. Bu tür bileşikler bir hidrojen/hava alevinde kemiluminesans reaksiyon verirler.

Alev fotometrik dedektörlerde algılama, indirgen bir alevin içinde uyarılmış S2 ve HPO türlerin oluşumuna dayanır. Bu türlerin karakteristik kemiluminesans emisyonu bir fotomultiplier tüple, uygun optik filtreler kullanılarak ölçülür; değerler, sülfür için 394 nm, fosfor için 510-526 nm’dir. Dedektör responsu fosfor için doğrusal, sülfür içinse konsantrasyonun karesine bağlıdır. Seçici algılama yapılabilmesi için, alev ve fotomultilier tüp arasına bir girişim filtresi konulmuştur.

Sistemde bir yanma odacığı, hidrojen (yakıt) ve hava (oksitleyici) girişleri için gaz hatları ve yanma ürünlerinin uzaklaştırıldığı bir eksoz çıkışı bulunur. Ayrıca, alevden yayılan UV ve görünür ışınların tutulması için termal bir filtre (bandpass) kullanılır. Fotomultipliertüp, yanma odacığından fiziksel olarak izole edilmiştir.

Alev fotometrik dedektör (FPD)

Pulslu Alev Fotometrik Dedektörler (PFPD)

Eski alev fotometrik dedektörlerin (FPD) sadece sülfür ve fosfor için seçici olmalarına karşın yeni geliştirilen PFPD, başta sülfür ve fosfor olmak üzere, N, As, Sn, Se, Ge, Te, Sb, Br, Ga, In ve Cu için de seçicidir.

Alev fotometrede olduğu gibi PFPD’de de bir yanma odacığı (veya yakma tüpü) ve bir fotomultiplier tüp bulunur; farklı olarak iki gaz akımı girişi vardır. İkinci gaz akımı, yanma işleminde analit emisyon parlaklığını düzeltmede yararlıdır.

PFPD’nin üst ksmındaki yakma teli sürekli olarak kızgın (kırmızı) haldedir. Gazlar ve kolondan gelen akım yakıcının içine akarken alevlenebilir karışım oranına ulaştıklarında yakma teli tarafından yakılır ve alev geriye, yakma tüpüne düner. Yakma tüpünde bulunan kolay alevlenebilir tüm maddeleri 10 milisaniyeden daha kısa bir zamanda süratle yakar ve sonra çıkar gider. Bu kısa alev pulsundan sonra daha zor alevlenebilen analitler uyarılır ve elementlerinin özelliklerine uygun ışık yayarlar. Bu periyot sırasında fotomultiplier tüp, yakma odacığındaki olaylar sonucu analitten yayılan ışığı kaydeder. 300 milisaniye sonra, giriş tüpleri ve kolondan yeni bir akım gelir, alev pulsu ile aynı işlemler tekrarlanır. Saniyede üç alev pulsu kaydedilecek şekilde işlem devam eder.

Pulsku alev fotometrik dedektör (PFPD)

b-Işını İyonizasyon Dedektörü

b-ışını dedektörü üretilen (1956) ilk iyonizasyon dedektörüdür; içinden saf taşıyıcı gazın geçtiği bir referans hücre ile kolon akımını taşıyan bir sensör hücreden oluşur. Her hücrede, b emisyonu veren ve üç kademeli fisyon işlemiyle kararlı Zr(90) atomuna dönüşen stronsyum(90) kaynağı bulunur. Doğan iyonizasyon akımları birbirlerini yok edecek, yani sistemi dengede tutacak yönlerde düzenlenir. Bu durumda iki hücrede olabilecek herhangi bir basınç veya sıcaklık değişimi dengeyi bozar. Test edilecek maddeyi içeren kolon akımının bulunduğu hücrede oluşan diferensiyal sinyal amplifiye edilir ve kaydedilir.

b-ışını iyonizasyon dedektörü

Termiyonik İyonizasyon Dedektörü

Isıtılan bir flamentten üretilen elektronlar uygun bir potansiyel tarafından hızlandırıldığında, yolu üzerindeki herhangi bir gaz veya buhar moleküllerini iyonlaştırabilecek yeterli enerjiye sahip olur. Bu bakış açısıyla, gaz kromatografisi çalışmalarının ilk yıllarında (1957), standart bir vakum iyonizasyon geyci modifiye edilerek bir GC dedektörü olarak kullanılabilir hale getirilmiştir.

Algılayıcı, içinde bir flament, ızgara toplayıcı-elektrot ve anot bulunan bir vakum tüpüdür; şekil olarak termiyonik triod valfe benzer. Tüp vakum altında çalışır; kolon akımını alabilecek ayarlanabilir bir giriş deliği vardır. Taşıyıcı gaz olarak helyum kullanılır. Taşıyıcı gaz helyumdur.

Dedekörün responsu içindeki gazın basıncı ile orantılıdır (0.02-1 5 mm Hg). Bu aralıktaki gaz basıncında respons doğrusaldır.

İyonizasyon geyç dedektör

Argon İyonizasyon Dedektörleri

İlk iyonizasyon dedektörlerini takiben tamamen farklı prensiplere göre çalışan iyonizasyon dedektörleri geliştirildi; bunlarda, pek çok organik bileşiği iyonize edebilecek yeterli enerjiye sahip yarı-kararlı (metastabil) atomlar üretebilen asal gazlar kullanıldı. Bir metastabil atom yüksüzdür, fakat dış orbitteki bir elektronun yer değiştirmesi sırasındaki çarpışmalarla oluşan yüksek enerjiyi absorblar. Metastabil atom bir organik bileşiğe çarptığında absorbladığı enejiyi (11.6 eV kadar) moleküle geçirir; sonuçta, elektronu orijinal orbitine dönerken molekülden de bir elektron çıkar. Bu prosesle üretilen elektronlar anotta toplanırken anot akımında büyük bir artış meydana gelir. (11.6 eV enerji pek çok organik maddeyi iyonaştırmaya yeterli bir enerjidir.)

Bu grupta toplanabilen dedektöler; basit veya makro, mikro ve termal argon dedektörleridir.

1. Makro Argon İyonizasyon Dedektörü

Makro argon iyonizasyon dedektörü paslanmaz çelikten yapılmış silindirik bir kap ve PTFE (veya yüksek sıcaklıklarda çalışıldığında uygun bir seramik) izolasyonla hazırlanmış bir sistemdir. Kabın içinde, gümüş bir folyoyla kaplanmış 90Sr kaynak vardır. Kaynağın radyoaktif gücü ~10 mili küri kadardır. 90Sr iki aşamada bozunur ve her aşamada a, b tanecikleri çıkararak kararlı 90Zr atomuna dönüşür.

Makro argon dedektör ve güç devresi

Radyoaktif kaynak tarafından üretilen elektronlar, dedektör hücrenin büyüklüğüne ve elektrotların geometrisine bağlı olarak 500-2000 V potansiyel uygulanarak hızlandırılırlar. Kaskat etki doğrusal bir dirençle kontrol altına alınır. Organik buhar (örnek) varlığında akım yükselirken doğrusal direncin uçlarındaki voltaj düşmesi de artar; böylece, elektrotlara uygulanan voltajın da düşmesi sağlanır.

2. Mikro Argon İyonizasyon Dedektörü

Mikro argon dedektörlerin ‘etkin’ algılama hacmi çok küçüktür; akış hızı 0.1 ml/dak. veya dada düşük olan kapiler kolonlarla kullanılabilecek şekilde dizayn edilmiştir. Anot boru şeklindedir, ~2.5 mm kadar çapındaki bir boşluk içine yerleştirilmiştir; böylece, anoda sadece sınırlandırılmış bir yol üzerindeki elektronların ulaşabilmesi ve elektrodun etrafındaki elektrik alanıın çok küçük olan anot çapı kadar bir bölgede kalması sağlanmış olur. Kapiler kolon anodun içine kaydırılarak yerleştirilir.

Anodun ucunda bulut şeklinde metastabil argon atomlar oluşur; kolondan gelen örnek molekülleri bu bulutun içinden geçerler ve iyonlaşırlar.

mikro argon dedektör

3. Termal Argon İyonizasyon Dedektörü

Termal argon iyonizasyon dedektörü, radyoaktif veya başka bir elektron üretici bir kaynağın kullanılmadığı bir argon dedektörüdür. Bu tip argon dedektörleri 150 0C’da çalışırlar. Cam 150 0C ve daha yüksek sıcaklıklarda iletken özellik kazandığından, elektrotlardan biri camdır.

Kolondan gelen argon taşıyıcı gaz, 150 0C veya daha yüksek sıcaklıktaki silindirik cam tüp içindeki paslanma çelik tüpten (anot) geçer. Tüp (anot), cam tüpten bir PTFE kaplamayla izole edilmiştir. Cam yüzeyden termal olarak yayılan elektronlar yüksek potansiyel altında hızlandırılırlar, argon atomlarıyla çarpışırlar ve metastabil atomlar üretirler; bunlar anotta toplanırlar. Organik buharların algılanması normal argon dedektörlerinde olduğu gibidir; yani, organik moleküller ve metastabil atomlar çarpışırlar, üretilen elektronlar ve organik iyonlar toplanır, oluşan akım yüksek impedanslı bir amplifier ile izlenir.

Termal argon dedektör

Helyum İyonizasyon Dedektörü (HID)

Helyum iyonizasyon dedektörün kullanım alanı oldukça yaygındır. Özellikle NOX, CO, CO2, O2, N2, ve H2 gibi, FID ve diğer dedektörlerin algılamadığı inorganik uçucu bileşiklerin tayininde kullanılır. Helyum atomunun iyonlaşması için radyoaktif bir kaynak kullanılır. Taşıyıcı gaz helyumdur. Gaz kromatogrfisi cihazından çıkan akım helyum iyonlarıyla karıştırılarak bileşenlerin iyonlaşmaları sağlanır. İyonlar bir elektrik akımı yaratırlar; ne kadar çok iyon üretilirse o kadar büyük akımlar meydana gelir.

HID’ler algılayacakları komponenti bozmaz veya tüketmez; bu nedenle birden fazla dedektör kullanılması gereken sistemlerde diğer dedektörlerin önünde olacak şekilde önce yerleştirilir.

Helyum dedektörü, argon dedektörü prensibine göre çalışır; metastabil helyum atomu hızlandırılmış elektronlar tarafından üretilir; enerjileri 19.8 ve 20.6 elektro volt dolayında olduğundan kolayca iyonlaşırlar, ve kararlı gazları ve diğer uçucu bileşikleri algılayabilirler.

HID’lerde, radyoaktif bir kaynak kullanılmadan da elektron üretimi yapılabilir. Elektronlar, bir elektrik deşarjıyla veya fotometrik olarak üretilir, uygun bir potansiyel altında bir inert gaz atmosferinde hızlandırılır ve helyumla karşılaştıılarak metastabil helyum atomlar üretilir

Deşarj iyonizasyon dedektörü

Pulslu Helyum Deşarj İyonizasyon Dedektörü

Pulslu helyum deşarj dedektöründe iki ayrı kısım vardır. Üst kısım çapı 1.6 m olan bir tüptür; burası deşarj bölgesidir. Alttaki kısım metastabil helyum atomları ve fotonların oluştuğu 3 mm çaplı bir tüptür. Helyum takviye gaz dedektörün üst kısmından girer deşarj kısmına geçer. Deşarj elektrotlara potansiyel uygulandığında elektronlar ve yüksek enerjili fotonlar ve bir miktar da metastabil helyum atomları üretilir.

Pulslu helyum deşarj dedektör

Pulslu Deşarj Elektron Yakalama İyonizasyon Dedektörü

Pulslu elektron yakalama dedektörü, pulslu deşarj helyum iyonizasyon dedektörünün gelişmiş bir tipidir. Fonksiyonları, geleneksel elektron yakalama dedektörüne benzer; farklılığı elektron üretim yöntemidir.

Dedektör iki kısımdan oluşur; üst kısım deşarj olayının meydana geldiği çapı daha küçük olan bir bölmedir. Alt kısım kolon akımında elektron yakalama işleminin meydana geldiği geniş çaplı bir bölmedir. Elektrotlar arasına potansiyel uygulanır, deşarjla elektronlar, yüksek enerjili fontlar ve bir miktar da metastabil helyum atomları medana elir. Propanla doplanmış helyum ikinci elektrodun tam altından girer ve metstabil atomların parçalanmasıyla ve fotonlar tarafından elektronlar üretilir.

Puslu elektron yakalama dedektörü

Radyoaktivite Dedektörü

Radyoaktif dedektörlerin iki tipi vardır; biri sadece 13C ölçer, diğeri 13C ve 3H ölçer. Her iki sistemde de taşıyıcı gaz helyum veya argon olabilir; kolon akımı, bakır oksit doldurulmuş bir fırına gönderilir. Burada tüm maddeler oksitlenerek karbon dioksit ve su çıkar.

Sadece 13C’ün sayılması istendiğinde yanma ürünleri bir kurutma tüpünden geçirilir, sonra %10 propan karıştırılır ve sayıcı tüpe gönderilir. Sayıcı tüpte radyoaktif tanecikler tarfından iyonlaşır ve elektronlar üretilir ve anoda doğru hızlandırılır. Böylece aynı işlemler devam ederek taşıyıcı gazın iyonizasyonu ilerler ve alınan sinyal büyür. Bu reaksiyonlar kararlı bir deşarj oluştuğunda sonlanıır. Reaksiyonların durmaması için ortamın soğutulması gerekir; bu işi akıma karıştırılan propan yapar; propanın görevi ’kuenç gaz’, yani soğutucu gaz olmasıdır.

Sayıcı tüp metal bir silindirdir, merkezinde izole edilmiş çubuk şeklinde bir elektrot bulunur. Kasanın dışı topraklanır ve merkez elektron ile kasa arasına yüksek potansiyel uygulanır. Sayıcıdan alınan sinyal zamana göre integre (toplanır) edilir ve böylece integratörden çıkış akımı, saniyede meydana gelen parçalanma sayısıyla orantılı olur.

13C ve 3H’in birarada sayılması istendiğinde, kolon akımındaki maddelerin tümünün karbon ve suya dönüşmesinden sonra, gaz akımına bir miktar hidrojen ilave edilir ve diğer bir fırındaki ısıtılmış demir tozlarından geçirilir. Bu fırında karışımdaki su, hidrojen ve trityuma indirgenir. Ayrıca, hidrojenin fazlası sistemdeki adsorbtif uçları doyurararak trityuun adsorblanmasını minimum düzeye düşürür. Sonra çıkış gazı, %10 propan ilave edildikten sonra sayıcıya gönderilir ve işlem 13C de olduğu gibi devam eder; sonuçta, hem 3H ve hem de 13C sayılır.

Karbon ve trityum sayıcı bir radyoaktivite dedektör


SIVI KROMATOGRAFİSİ DEDEKTÖRLERİ

Sıvı kromatografide, gaz kromatografide olduğu gibi çok hassas dedektör sistemlerine gereksinim olmaz. Bu nedenle örneğe bağlı olarak çeşitli dedektörler kullanılabilir.

En çok kullanılan dedektörler ultraviyole ışın absorbsiyonuna dayanan dedektörlerdir. Bunlar fotometrik ve spektrofotometrik olabilir. Fotometrelerde bir civa kaynaklan alınan 254 ve 280 nm bandları kullanılır; bu dalga boylarında pek çok organik fonksiyonel grup absorbsiyon yapar. Spektrofotometrik dedektörler fotometrelerden daha elverişlidir, çünkü örnekteki maddelerin absorbsiyon yapacağı dalga boylarını seçme olanağı vardır. Fotometrik dedektörlerde cihazın dalga boyu aralığında, örnekteki maddelerin ışığı absorblaması, fakat çözgenin herhangi bir absorbsiyona neden olmaması gerekir.

Sıvı kromatografisi sistemleri için çok çeşitli dedektörler geliştirilmiş olmasına rağmen burada, bu bölümde kullanımı yaygın olan birkaç tip dedektör üzerinde durulmuştur.

·         UV dedektörler
·         Refraktif indeks dedektörler
·         Fluoresans dedektör
·         Elektrik iletkenlik dedektörü
·         Elektrokimyasal dedektör
·         Transport dedektörler
·         Buharlaştırmalı ışık saçılması dedektörü
·         Kütle spektrometresi
·         Radyoaktivite dedektörü

(Kütle spektrometresi ve radyoaktivite dedektörü, gaz kromatografisi dedektörleri bölümünde incelenmiş olduğundan burada tekrar ele alınmamıştır.)

UV dedektörler

UV dedektörler, sıvı ve iyon değiştirici kromatografide de kullanılan çok önemli dedektörlerdir; 180-350 nm aralığında ışık absorblayabilen maddeler için uygundur. Hassasiyetlei, yaklaşık olarak 10-8-10 -9 gm/ml dir. Tüm olefinler, aromatikler, >CO, >CS, -N=O ve –N N– grupları içeren moleküller gibi pek çok bileşik UV bölgede (200-350 A) absorbsiyon yapar; tek veya çift bağları (p elektronlar) vardır ve bağlanmamış elektronları bulunur. Ultraviyole dedektörler bir örneğin ışığı absorblama yeteneğini ölçer; işlem, örneğin özelliğine göre, bir veya birkaç dalga boyunda ölçüm yapılmasını gerektirebilir. Dört tip UV dedektör vardır; sabit dalga boylu, değişken (veya çoklu) dalga boylu, değişken (veya çoklu) dalga boylu dispersiv, diod dizili (diod aray).

1. Sabit Dalga Boylu UV Dedektörler

Sabit dalga boylu UV dedektörde tek dalga boyunda bir ışık kullanılır; ışık, özel bir deşarj lambasından ede edilir. Bu amaçla kullanılan en popüler lamba düşük basınçlı cıva buharı lambasıdır; ışığının büyük kısmı 254 nm dalga boyundadır. Düşük basınçlı kadmiyum (225 nm) ve çinko (214 nm) lambalar da uygun diğer lambalardır. Lambalar tümüyle monokromatik değildir, diğer dalga boylarında ışık da yayarlar, ancak bunların şiddetleri çok düşüktür. Monokromatik ışık elde edilmesi için uygun bir filtre kullanılır.

Dedektör, içinden  kolondan gelen akımın geçtiği silindirik bir hücredir. Uygun bir UV lambadan (veya görünür bölgede çalışılıyorsa görünür lamba) gelen ışık örnek hücresinden geçer ve bir fotoelektrik hücreye çarpar. Sabit dalga boylu dedektörde ışığın dalga boyu kullanılan lambaya bağlıdır.

Sabit dalga boylu UV-görünür dedektör

2. Değişken (veya Çoklu) Dalga Boyu

Çoklu-dalga boylu bir dispersiv dedektör şekilde görülmektedir. Işık kaynağı bir deuteryum veya ksenon deşarj lambası gibi, dalga boyu aralığı geni bir kaynaktır. Gelen ışık iki ayna (kavisli) tarafından paralelleştirilerek holografik bir difraksiyon grating üzerine gönderilir. Dağıtılan ışık kavisli bir ayna vasıtasıyla bir düz ayna üzerinde odaklanır ve bu aynanın açısı uygun değere getirilerek özel dalga boyu seçilir. Seçilen dalga boyundaki ışık bir mercek tarafından örnek akış hücresine, dolayısıyla kolon akımına gönderilir. Hücreden çıkan demet diğer bir mercek tarafından bir fotosel üzerinde toplanır; algılama, geçen ışığın şiddetinin bir fonksiyonu olarak kaydedilir.

Dedektör, genellikle tarama (scan) moduna göre ayarlanır; hareketli faz akışı durdurularak, örnek hücresindeki bileşenin spektrumunun çizilmesi tercih edilir.

Değişken dalga boylu UV dedektörü

3. Değişken (veya Çoklu) Dalga Boylu Dispersiv UV Dedektör

Deuteryum lambadan gelen ışık, iki eğri lamba tarafından yönlendirilerek holografik bir difraksiyon gratingde toplanır. Gratingde dağıtılan ışık bir eğri ayna ve düz aynadan yansıtıldıktan sonra, bir diğer düz aynaya gelir. Bu aynanın uygun bir açıya ayarlanmasıyla özel dalga boyundaki ışık seçilir ve bir mercekle örneğin bulunduğu (dolayısıyla kolon akımının geldiği) hücreye yönlendirilir. Hücreden çıkan ışık demeti çıkıştaki mercekle bir fotosel üzerine odaklanır; geçen ışığın şiddetiyle bağıntılı bir respons verir. Dedektör, genellikle maddenin spektrumunu çizen bir alete bağlanır.

Değişken dalga boylu dispersiv UV dedektör

4. Diod Dizi (Ddiod Array) Dedektör

Diod dizi dedektörünün fonksiyonu dispersiv enstrumandan tamamen farklıdır.

Geniş aralıklı bir emisyon kaynaktan (deuteryum lamba gibi) gelen ışık bir akromatik mercek sistemiyle paralelleştirilir ve böylece ışığın tamamı, holografik bir grating üzerinde bulunan dedektör hücresinden geçer. Böyle bir düzenlemeyle kaynaktan çıkan tüm dalga boylarındaki ışık örnekten geçmiş olur. Gratingden çkan dispers (dağıtılmış) ışık bir diod array üzerine düşer. Array’de yüzlerce diod vardır, her diyotun çıkışı bir bilgisayar tarafından alınır ve bir sabit diskte depolanır. İşlem sonunda her bir dioda karşılık gelen UV dalga boyundaki kromatogram çizilir.

Enstrumanların çoğu, ayırma işlemini takiben en az bir dodu izleyebilecek şekilde dizayn edilmiştir; böylece ayırma gerçekleşirken kromatogram da çizilebilmektedir. Bu tür sistemler örnekteki komponentleerin doğrudan spektrumlarını verdiğinden ideal sistemlerdir. (Eğri, absorbsiyon-dalga boyu ilişkisini gösterir.)


Diod –array UV dedektör

Refraktif İndeks Dedektörler

Refraktif indeks bir bulk özelliğidir, dolayısıyla refraktif indeks dedektörünün algılaması hareketli fazdaki tüm komponentlerin toplam refraktif indeksine dayanır.

Refraktif indeks dedektörü en az hassas sıvı kromatografisi dedektörüdür; çevre sıcaklığı, basınç, akış hızı değiştiğinde dedektörün algılaması da değişir. Çeşitli dezavantajlarına rağmen, refraktif indeks dedektörleri, noniyonikler, UV bölgede absorbsiyon yapamayan maddeler ve flüoresans olmayan bileşikler için çok uygun dedektörlerdir. Refraktif indeks dedektörleri çeşitlidir; diferansiyel refraktif indeks, Fresnel metodu, Christiansen etki, interferometre, termal lens, dielektrik sabiti dedektörler gibi.

Şekilde bir diferansiyel refraktif indeks dedektörünün şematik diyagramı verilmiştir. Burada çözgen ve analit çözeltileri bir cam levha ile birbirinden ayrılmıştır. Cam levha, iki çözeltinin refraktif indeksleri birbirinden farklı olduğunda gelen ışının sapmasını sağlayacak bir açı ile yerleştirilmiştir. Bir ışık demeti optik maskeden geçerek hücre bölmesine gelir. Mercekler demeti yönlendirerek örnek ve referans hücrelerden geçmesini ve düz aynaya gelmesini sağlarlar. Ayna demeti yansıtarak tekrar örnek ve referans hücrelerine gönderir. Mercekten geçen demet bir fotosel üzerine odaklanır. Demetin yerini şiddeti değil, açısal sapması belirler; sapma, iki hücredeki maddeler arasındaki refraktif indeks farkının bir sonucudur. Fotoelektrik hücrede demetin odak konumu (yeri) değiştiğinde çıkış da değişir ve fark sinyal elektronik olarak modifiye edilerek örnek hücresindeki madde konsantrasyonuyla orantılı bir sinyal şekline dönüştürülür.

Refraktif indeks dedektörü (sapma açısına göre)

Fluoresans Dedektör

Fluoresans dedektör en hassas sıvı kromatografisi dedektörüdür; bu nedenle eser miktarlardaki maddelerin analizlerinde kullanılır. Çok hassas olmasına karşın, responsu ancak sınırlı bir konsantrasyon aralığında doğrusaldır. Doğal olarak fluoresans olmayan maddelere karşı hassas olmayışı da bu tip dedektörün diğer bir dezavantajıdır. Bu tür bileşiklerin saptanması maddelerin fluoresans türevleri üzerinden yapılabilir.

Fluoresans dedektörler basit veya kompleks olabilir. Basit bir fluoresans dedektörde bir tek dalga boyu uyarıcı kaynak ve bir algılayıcı bulunur; algılayıcı tüm dalga boylarının fluoresans ışığını izler. Bu tip bir fluoresans dedektör bazı örnekler için çok hassastır ve oldukça da ucuzdur. Ancak tek bir dalga boyunda uyarılması ve sadece geniş bir emisyon dalga boyu nedeniyle çok yönlü kullanımlar için uygun değildir. Kompleks bir dedektör ise çok amaçlıdır; bunda, fluoresans spektrometreye küçük bir algılayıcı hücre yerleştirilmiştir. Uyarıcı ve emisyon dalga boylarının seçilebilir olmasından dolayı çok yönlüdür. Ayrıca, istendiği durumlarda uyarma ve emisyon spektrumları elde edilebilir.

Tek dalga boyu uyarmal ıbir fluoresans dedektör

Elektrik iletkenlik dedektörü

Elektriksel iletkenlik dedektörü  (İyon-değiştirici kromatografide de kullanılır)  hareketli fazın iletkenliğini ölçer. Ortamın kendi iletkenliğinden ileri gelebilecek iletkenlikler uygun elektronik düzenlemelerle giderilmelidir. Hareketli fazda tampon olması halinde dedektörde bir taban sinyali meydan gelir; bu  durumda ölçme başarısız olur. Elektrikli kondüktivite dedektörü bir bulk dedektör tipidir; dolayısıyla çözelti ve solventteki tüm iyonları algılar.

Algılayıcı elektrotların polarizasynunu önlemek için alternatif akım kullanılmalıdır; böylece ölçülen değer, elektrot sisteminin direnci değil, impedansı olur. Fiziksel kimya bakış açısıyla bir çözeltinin iletenliği, onun direncinden daha önemlidir.

Elektriksel kondüktivite dedektörün algılayıcısı, diğer tüm dedektör algılayıcılar arasında en basit olanıdır. Sistemde, içinde iki elektrot bulunan uygun bir akış hücesi vardır; elektrotlar, bir Wheatstone köprüsünün bir koluna impedans komponeneti olacak şekilde yerleştirilirler. İyonlar algılayıcı içinde hareket ettiklerinde elektrotlar arasındaki impedans değişeceğinden, köprüden buna eşdeğer miktarda bir dengeleme sinyali meydana gelir. Ancak bu sinyal hücredeki iyon konsantrasyonuyla doğrusal olarak değişen bir sinyal değildir; bu nedenle elektronik devre tarafından modifiye edilerek doğrusal sinyal şekline dönüştürülür ve kaydedilir.

Elektriksel iletkenlik dedektörü

Elektrokimyasal dedektör

Dedektör, uygun elektrotların bulunduğu bir hücrede analitin oksitlenme/indirgenme reaksiyonları sonucunda oluşan akımın ölçülmesi esasına göre çalışır. Doğan akımın seviyesi doğrudan analit konsantrasyonuyla orantılı olduğundan bu tip dedektörler kantitatif tayine olanak verir.

Elektrokimyasal dedektölerin uygulama alanı fazla geniş değildir; fakat hassasiyetinin yüksek olması nedeniye özellikle doğal ürünler ve yiyecek maddeleri incelmelerinde kullanılır. Oksijen, metal kirlilikleri ve halojenler ölçmelerde önemli hatalara neden olurlar.

Elektrokimyasal dedektörlerde üç elektrot bulunur; oksitlenme veya indirgrnme reaksiyonunun olduğu iş elektrodu, yardımcı elektrot ve referans elektrot. Referans elektrot hareketli fazın taban iletkenliğinde olabilecek değişiklikleri dengeler. Eektrotlar çeşitli geometrik şekillerde yerleştirilebilir; ince tabaka hücrelerde en çok kullanılan yerleşimler şekil(b) ve (c)’degörüldüğü gibidir.

(a) Bir elektrokimyasal dedektör, (b), (c) farklı elektrod konfigürasyonları

Transport Dedektörler

Transport dedektör metal zincir, tel veya disk gibi bir taşıyıcıdır. Sürekli olarak kolon akımından geçer, örneğin bulunduğu hareketli fazdan örneği ekstrakt eder ve yüzeyinde ince bir film tabakası halinde biriktirir; film üzerinde kalan hareketli faz buharlaştırılarak uzaklaştırılır. Bu işlemden sonra taşıyıcı, üzerinde biriken maddenin saptanması için uygun bir algılama sistemiyle taranır. Bu amaçla, örneğin, piroliz ürünlerinin saptanması istendiğinde alev iyonizasyon dedektörü (FID) kullanılır; bunun için taşıyıcı ısıtılır, örnekteki piroliz ürünleri açığa çıkar ve ürünler çoğunlukla karbon içerdiğinden FID ile algılanır.

Hareketli fazda uçucu olmayan maddeler bulunması halinde doğru sonuç vermez, ayrıca kullanılan solventin uçucu ve çok saf olması gerekir.

Şekilde, transport dedektörlere bir örnek olarak hareketli tel (moving wire) dedektörün şematik diyagramı verilmiştir. Bu tip bir dedektörde, sürekli hareket eden bir tel halka ile sıyırıcının bir kısmı bir alev iyonizasyon dedektörüne taşınır. Tel önce sıyırıcıdan geçer, onu bir fırına taşır ve burada sıyırıcının çözgeni buharlaşır. Buradan azot atmosferi altında tutulan  piroliz fırınına gelen örnek piroliz olur; piroliz ürünleri azot gazıyla taşınarak alev iyonizasyon dedektörü (FID) içindeki merkez tüpe taşınır ve bileşenler iyonizasyon dedektörü tarafından algılanır. FID, hareketli fazdaki solventten etkilenmeyen bir dedektördür.

Pye Unicam hareketli tel dedektörü

Buharlaştırmalı Işık Saçılması Dedektörü

Bu tip bir dedektörde, kolon akımını küçücük damlacıklar halinde atomize eden bir püskürtücü bulunur. Damlacıklar buharlaştırılarak solventi uzaklaştırılır ve maddeler (solutes) atomizasyonun gazı içinde ince, süspansiyon şeklinde dağılır.

Atomizasyon gazı hava veya tercihen inert bir gaz olabilir. Süspanse tanecikler bir ışık demetinden geçer, ışığın saçılmasına neden olur ve saçılan ışık bir çift optik fiberden geçerek bir fotomultipliere gelir; çıkış elektronik olarak işlenerek bir bilgisayar sistemine veya potansiyometrik kaydediciye gönderilir. Teorik olarak dedektör uçucu olmayan tüm maddeleri algılar. Işık dispersiyonu çoğunlukla Raleigh saçılması karakterinde olduğunda, algılama maddenin kütlesiyle orantılı olur; bu özellik nedeniyle dedektöre ‘kütle dedektörü’ de denilmektedir. Doğrusal bir algılama, taneciklerin büyüklüğünün kontrol altında tutulmasını gerektirir. Dedektörün hassasiyeti 10-20 ng madde miktarıdır.

(a) Buharlaştırmalı ışık saçılması dedektörü şeması, ve (b) aynı dedektörün ticari bir diyagramı